Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 325(1): H54-H65, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145956

RESUMO

Ventricular arrhythmia (VT/VF) can complicate acute myocardial ischemia (AMI). Regional instability of repolarization during AMI contributes to the substrate for VT/VF. Beat-to-beat variability of repolarization (BVR), a measure of repolarization lability increases during AMI. We hypothesized that its surge precedes VT/VF. We studied the spatial and temporal changes in BVR in relation to VT/VF during AMI. In 24 pigs, BVR was quantified on 12-lead electrocardiogram recorded at a sampling rate of 1 kHz. AMI was induced in 16 pigs by percutaneous coronary artery occlusion (MI), whereas 8 underwent sham operation (sham). Changes in BVR were assessed at 5 min after occlusion, 5 and 1 min pre-VF in animals that developed VF, and matched time points in pigs without VF. Serum troponin and ST deviation were measured. After 1 mo, magnetic resonance imaging and VT induction by programmed electrical stimulation were performed. During AMI, BVR increased significantly in inferior-lateral leads correlating with ST deviation and troponin increase. BVR was maximal 1 min pre-VF (3.78 ± 1.36 vs. 5 min pre-VF, 1.67 ± 1.56, P < 0.0001). After 1 mo, BVR was higher in MI than in sham and correlated with the infarct size (1.43 ± 0.50 vs. 0.57 ± 0.30, P = 0.009). VT was inducible in all MI animals and the ease of induction correlated with BVR. BVR increased during AMI and temporal BVR changes predicted imminent VT/VF, supporting a possible role in monitoring and early warning systems. BVR correlated to arrhythmia vulnerability suggesting utility in risk stratification post-AMI.NEW & NOTEWORTHY The key finding of this study is that BVR increases during AMI and surges before ventricular arrhythmia onset. This suggests that monitoring BVR may be useful for monitoring the risk of VF during and after AMI in the coronary care unit settings. Beyond this, monitoring BVR may have value in cardiac implantable devices or wearables.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Taquicardia Ventricular , Animais , Suínos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/complicações , Infarto do Miocárdio/complicações , Isquemia Miocárdica/complicações , Eletrocardiografia/efeitos adversos , Coração , Fibrilação Ventricular
2.
Eur J Appl Physiol ; 123(3): 547-559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36376599

RESUMO

PURPOSE: Electrocardiogram (ECG) QRS voltages correlate poorly with left ventricular mass (LVM). Body composition explains some of the QRS voltage variability. The relation between QRS voltages, LVM and body composition in endurance athletes is unknown. METHODS: Elite endurance athletes from the Pro@Heart trial were evaluated with 12-lead ECG for Cornell and Sokolow-Lyon voltage and product. Cardiac magnetic resonance imaging assessed LVM. Dual energy x-ray absorptiometry assessed fat mass (FM) and lean mass of the trunk and whole body (LBM). The determinants of QRS voltages and LVM were identified by multivariable linear regression. Models combining ECG, demographics, DEXA and exercise capacity to predict LVM were developed. RESULTS: In 122 athletes (19 years, 71.3% male) LVM was a determinant of the Sokolow-Lyon voltage and product (ß = 0.334 and 0.477, p < 0.001) but not of the Cornell criteria. FM of the trunk (ß = - 0.186 and - 0.180, p < 0.05) negatively influenced the Cornell voltage and product but not the Sokolow-Lyon criteria. DEXA marginally improved the prediction of LVM by ECG (r = 0.773 vs 0.510, p < 0.001; RMSE = 18.9 ± 13.8 vs 25.5 ± 18.7 g, p > 0.05) with LBM as the strongest predictor (ß = 0.664, p < 0.001). DEXA did not improve the prediction of LVM by ECG and demographics combined and LVM was best predicted by including VO2max (r = 0.845, RMSE = 15.9 ± 11.6 g). CONCLUSION: LVM correlates poorly with QRS voltages with adipose tissue as a minor determinant in elite endurance athletes. LBM is the strongest single predictor of LVM but only marginally improves LVM prediction beyond ECG variables. In endurance athletes, LVM is best predicted by combining ECG, demographics and VO2max.


Assuntos
Eletrocardiografia , Hipertrofia Ventricular Esquerda , Feminino , Humanos , Masculino , Composição Corporal , Eletrocardiografia/métodos , Ventrículos do Coração , Hipertrofia Ventricular Esquerda/patologia , Imageamento por Ressonância Magnética
3.
J Am Heart Assoc ; 11(13): e024294, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730633

RESUMO

Background An increase in beat-to-beat variability of repolarization (BVR) predicts arrhythmia onset in experimental models, but its clinical translation is not well established. We investigated the temporal changes in BVR before nonsustained ventricular tachycardia (nsVT) in patients with implantable cardioverter defibrillator (ICD). Methods and Results Patients with nsVT on 24-hour Holter before ICD implantation for ischemic cardiomyopathy (ischemic cardiomyopathy+nsVT, n=43) or dilated cardiomyopathy (dilated cardiomyopathy+nsVT, n=37), matched ICD candidates without nsVT (ischemic cardiomyopathy-nsVT, n=29 and dilated cardiomyopathy-nsVT, n=26), and patients without ICD without structural heart disease (n=50) were studied. Digital Holter recordings from these patients were analyzed using a modified fiducial segment averaging technique to detect the QT interval. The nsVT episodes were semi-automatically identified and QT-BVR was assessed 1-, 5-, and 30-minutes before nsVT, and at rest (at 3:00 am). Resting BVR was higher in ICD patients compared with controls without structural heart disease. In ICD patients with nsVT, BVR increased significantly 1-minute pre-nsVT in ischemic cardiomyopathy (2.21±0.59 ms, versus 5 minutes pre-nsVT: 1.78±0.50 ms, P<0.001) and dilated cardiomyopathy (2.09±0.57 ms, versus 5-minutes pre-nsVT: 1.58±0.51 ms, P<0.001), but not in patients without nsVT. In multivariable Cox regression analysis, pre-nsVT BVR was a significant predictor for appropriate therapy during follow-up. Conclusions Baseline BVR is elevated and temporal changes in BVR predict imminent nsVT events in patients with ICD independent of underlying cause. Real-time BVR monitoring could be used to predict impending ventricular arrhythmia and allow preventive therapy to be incorporated into ICDs.


Assuntos
Cardiomiopatia Dilatada , Desfibriladores Implantáveis , Taquicardia Ventricular , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/terapia , Desfibriladores Implantáveis/efeitos adversos , Eletrocardiografia Ambulatorial/métodos , Humanos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia
4.
Front Bioeng Biotechnol ; 10: 806761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237576

RESUMO

Changes in respiratory rate have been found to be one of the early signs of health deterioration in patients. In remote environments where diagnostic tools and medical attention are scarce, such as deep space exploration, the monitoring of the respiratory signal becomes crucial to timely detect life-threatening conditions. Nowadays, this signal can be measured using wearable technology; however, the use of such technology is often hampered by the low quality of the recordings, which leads more often to wrong diagnosis and conclusions. Therefore, to apply these data in diagnosis analysis, it is important to determine which parts of the signal are of sufficient quality. In this context, this study aims to evaluate the performance of a signal quality assessment framework, where two machine learning algorithms (support vector machine-SVM, and convolutional neural network-CNN) were used. The models were pre-trained using data of patients suffering from chronic obstructive pulmonary disease. The generalization capability of the models was evaluated by testing them on data from a different patient population, presenting normal and pathological breathing. The new patients underwent bariatric surgery and performed a controlled breathing protocol, displaying six different breathing patterns. Data augmentation (DA) and transfer learning (TL) were used to increase the size of the training set and to optimize the models for the new dataset. The effect of the different breathing patterns on the performance of the classifiers was also studied. The SVM did not improve when using DA, however, when using TL, the performance improved significantly (p < 0.05) compared to DA. The opposite effect was observed for CNN, where the biggest improvement was obtained using DA, while TL did not show a significant change. The models presented a low performance for shallow, slow and fast breathing patterns. These results suggest that it is possible to classify respiratory signals obtained with wearable technologies using pre-trained machine learning models. This will allow focusing on the relevant data and avoid misleading conclusions because of the noise, when designing bio-monitoring systems.

5.
Physiol Meas ; 42(11)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34571494

RESUMO

Background.Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. Its quantification has been suggested as a biomarker to diagnose different diseases. Two state-of-the-art methods, based on subspace projections and entropy, are used to estimate the RSA strength and are evaluated in this paper. Their computation requires the selection of a model order, and their performance is strongly related to the temporal and spectral characteristics of the cardiorespiratory signals.Objective.To evaluate the robustness of the RSA estimates to the selection of model order, delays, changes of phase and irregular heartbeats as well as to give recommendations for their interpretation on each case.Approach.Simulations were used to evaluate the model order selection when calculating the RSA estimates introduced before, as well as three different scenarios that can occur in signals acquired in non-controlled environments and/or from patient populations: the presence of irregular heartbeats; the occurrence of delays between heart rate variability (HRV) and respiratory signals; and the changes over time of the phase between HRV and respiratory signals.Main results.It was found that using a single model order for all the calculations suffices to characterize RSA correctly. In addition, the RSA estimation in signals containing more than 5 irregular heartbeats in a period of 5 min might be misleading. Regarding the delays between HRV and respiratory signals, both estimates are robust. For the last scenario, the two approaches tolerate phase changes up to 54°, as long as this lasts less than one fifth of the recording duration.Significance.Guidelines are given to compute the RSA estimates in non-controlled environments and patient populations.


Assuntos
Arritmia Sinusal , Arritmia Sinusal Respiratória , Entropia , Frequência Cardíaca , Humanos , Taxa Respiratória
6.
Sci Rep ; 11(1): 16014, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362950

RESUMO

The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.


Assuntos
Frequência Cardíaca , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/métodos , Respiração , Desmame do Respirador/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
7.
Entropy (Basel) ; 23(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441079

RESUMO

Transfer entropy (TE) has been used to identify and quantify interactions between physiological systems. Different methods exist to estimate TE, but there is no consensus about which one performs best in specific applications. In this study, five methods (linear, k-nearest neighbors, fixed-binning with ranking, kernel density estimation and adaptive partitioning) were compared. The comparison was made on three simulation models (linear, nonlinear and linear + nonlinear dynamics). From the simulations, it was found that the best method to quantify the different interactions was adaptive partitioning. This method was then applied on data from a polysomnography study, specifically on the ECG and the respiratory signals (nasal airflow and respiratory effort around the thorax). The hypothesis that the linear and nonlinear components of cardio-respiratory interactions during light and deep sleep change with the sleep stage, was tested. Significant differences, after performing surrogate analysis, indicate an increased TE during deep sleep. However, these differences were found to be dependent on the type of respiratory signal and sampling frequency. These results highlight the importance of selecting the appropriate signals, estimation method and surrogate analysis for the study of linear and nonlinear cardio-respiratory interactions.

8.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917824

RESUMO

Impedance pneumography has been suggested as an ambulatory technique for the monitoring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to noise sources. It is important that such noisy segments are identified and removed, since they could have a huge impact on the performance of data-driven decision support tools. In this study, we investigated the added value of machine learning algorithms to separate clean from noisy bio-impedance signals. We compared three approaches: a heuristic algorithm, a feature-based classification model (SVM) and a convolutional neural network (CNN). The dataset consists of 47 chronic obstructive pulmonary disease patients who performed an inspiratory threshold loading protocol. During this protocol, their respiration was recorded with a bio-impedance device and a spirometer, which served as a gold standard. Four annotators scored the signals for the presence of artefacts, based on the reference signal. We have shown that the accuracy of both machine learning approaches (SVM: 87.77 ± 2.64% and CNN: 87.20 ± 2.78%) is significantly higher, compared to the heuristic approach (84.69 ± 2.32%). Moreover, no significant differences could be observed between the two machine learning approaches. The feature-based and neural network model obtained a respective AUC of 92.77±2.95% and 92.51±1.74%. These findings show that a data-driven approach could be beneficial for the task of artefact detection in respiratory thoracic bio-impedance signals.


Assuntos
Artefatos , Máquina de Vetores de Suporte , Algoritmos , Impedância Elétrica , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
9.
Sensors (Basel) ; 21(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477888

RESUMO

The electrocardiogram (ECG) is an important diagnostic tool for identifying cardiac problems. Nowadays, new ways to record ECG signals outside of the hospital are being investigated. A promising technique is capacitively coupled ECG (ccECG), which allows ECG signals to be recorded through insulating materials. However, as the ECG is no longer recorded in a controlled environment, this inevitably implies the presence of more artefacts. Artefact detection algorithms are used to detect and remove these. Typically, the training of a new algorithm requires a lot of ground truth data, which is costly to obtain. As many labelled contact ECG datasets exist, we could avoid the use of labelling new ccECG signals by making use of previous knowledge. Transfer learning can be used for this purpose. Here, we applied transfer learning to optimise the performance of an artefact detection model, trained on contact ECG, towards ccECG. We used ECG recordings from three different datasets, recorded with three recording devices. We showed that the accuracy of a contact-ECG classifier improved between 5 and 8% by means of transfer learning when tested on a ccECG dataset. Furthermore, we showed that only 20 segments of the ccECG dataset are sufficient to significantly increase the accuracy.


Assuntos
Artefatos , Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Cardiopatias/diagnóstico , Humanos , Máquina de Vetores de Suporte
10.
IEEE Trans Biomed Eng ; 68(6): 1882-1893, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33001798

RESUMO

OBJECTIVE: Respiratory sinus arrhythmia (RSA) refers to heart rate oscillations synchronous with respiration, and it is one of the major representations of cardiorespiratory coupling. Its strength has been suggested as a biomarker to monitor different conditions, and diseases. Some approaches have been proposed to quantify the RSA, but it is unclear which one performs best in specific scenarios. The main objective of this study is to compare seven state-of-the-art methods for RSA quantification using data generated with a model proposed to simulate, and control the RSA. These methods are also compared, and evaluated on a real-life application, for their ability to capture changes in cardiorespiratory coupling during sleep. METHODS: A simulation model is used to create a dataset of heart rate variability, and respiratory signals with controlled RSA, which is used to compare the RSA estimation approaches. To compare the methods objectively in real-life applications, regression models trained on the simulated data are used to map the estimates to the same measurement scale. Results, and conclusion: RSA estimates based on cross entropy, time-frequency coherence, and subspace projections showed the best performance on simulated data. In addition, these estimates captured the expected trends in the changes in cardiorespiratory coupling during sleep similarly. SIGNIFICANCE: An objective comparison of methods for RSA quantification is presented to guide future analyses. Also, the proposed simulation model can be used to compare existing, and newly proposed RSA estimates. It is freely accessible online.


Assuntos
Arritmia Sinusal Respiratória , Arritmia Sinusal/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Humanos , Respiração
11.
Front Physiol ; 11: 581250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584326

RESUMO

This study aims at investigating the development of premature infants' autonomic nervous system (ANS) based on a quantitative analysis of the heart-rate variability (HRV) with a variety of novel features. Additionally, the role of heart-rate drops, known as bradycardias, has been studied in relation to both clinical and novel sympathovagal indices. ECG data were measured for at least 3 h in 25 preterm infants (gestational age ≤32 weeks) for a total number of 74 recordings. The post-menstrual age (PMA) of each patient was estimated from the RR interval time-series by means of multivariate linear-mixed effects regression. The tachograms were segmented based on bradycardias in periods after, between and during bradycardias. For each of those epochs, a set of temporal, spectral and fractal indices were included in the regression model. The best performing model has R 2 = 0.75 and mean absolute error MAE = 1.56 weeks. Three main novelties can be reported. First, the obtained maturation models based on HRV have comparable performance to other development models. Second, the selected features for age estimation show a predominance of power and fractal features in the very-low- and low-frequency bands in explaining the infants' sympathovagal development from 27 PMA weeks until 40 PMA weeks. Third, bradycardias might disrupt the relationship between common temporal indices of the tachogram and the age of the infant and the interpretation of sympathovagal indices. This approach might provide a novel overview of post-natal autonomic maturation and an alternative development index to other electrophysiological data analysis.

12.
Comput Methods Programs Biomed ; 182: 105050, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473442

RESUMO

BACKGROUND AND OBJECTIVES: The presence of noise sources could reduce the diagnostic capability of the ECG signal and result in inappropriate treatment decisions. To mitigate this problem, automated algorithms to detect artefacts and quantify the quality of the recorded signal are needed. In this study we present an automated method for the detection of artefacts and quantification of the signal quality. The suggested methodology extracts descriptive features from the autocorrelation function and feeds these to a RUSBoost classifier. The posterior probability of the clean class is used to create a continuous signal quality assessment index. Firstly, the robustness of the proposed algorithm is investigated and secondly, the novel signal quality assessment index is evaluated. METHODS: Data were used from three different studies: a Sleep study, the PhysioNet 2017 Challenge and a Stress study. Binary labels, clean or contaminated, were available from different annotators with experience in ECG analysis. Two types of realistic ECG noise from the MIT-BIH Noise Stress Test Database (NSTDB) were added to the Sleep study to test the quality index. Firstly, the model was trained on the Sleep dataset and subsequently tested on a subset of the other two datasets. Secondly, all recording conditions were taken into account by training the model on a subset derived from the three datasets. Lastly, the posterior probabilities of the model for the different levels of agreement between the annotators were compared. RESULTS: AUC values between 0.988 and 1.000 were obtained when training the model on the Sleep dataset. These results were further improved when training on the three datasets and thus taking all recording conditions into account. A Pearson correlation coefficient of 0.8131 was observed between the score of the clean class and the level of agreement. Additionally, significant quality decreases per noise level for both types of added noise were observed. CONCLUSIONS: The main novelty of this study is the new approach to ECG signal quality assessment based on the posterior clean class probability of the classifier.


Assuntos
Artefatos , Eletrocardiografia Ambulatorial/métodos , Algoritmos , Humanos , Aprendizado de Máquina , Probabilidade , Razão Sinal-Ruído
13.
Phys Med Biol ; 64(6): 065001, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30695762

RESUMO

We propose and evaluate a method to estimate a respiratory signal from ungated cardiac magnetic resonance (CMR) images. Ungated CMR images were acquired in five subjects who performed exercise at different intensity levels under different physiological conditions while breathing freely. The respiratory motion was estimated by applying principal components analysis (PCA). A sign correction procedure was developed to correctly define inspiration and expiration, based on either tracking of the diaphragmatic motion or estimation of the lung volume or a combination of both. Evaluation was done using a plethysmograph signal as reference. There was a good correspondence between the plethysmograph and the estimated respiratory signals. Respiratory motion was effectively captured by one of the PCA components in 88% of the cases. Moreover, the proposed method successfully estimated the respiratory phase in 91% of the evaluated slices. The pipeline is robust, admitting a slight decline in performance with increased exercise intensity. Respiratory motion was accurately estimated by means of PCA and the application of a sign correction procedure. Our method showed promising results even for acquisitions during exercise where excessive body motion occurs. The proposed method provides a way to extract the respiratory signal from ungated CMR images, at rest as well as during exercise, in a fully unsupervised fashion, which may reduce the clinician's workload drastically.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Exercício Físico/fisiologia , Coração/fisiologia , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Respiração , Descanso/fisiologia , Humanos , Interpretação de Imagem Assistida por Computador , Movimento , Mecânica Respiratória
14.
PeerJ Comput Sci ; 5: e226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33816879

RESUMO

Many of the existing electrocardiogram (ECG) toolboxes focus on the derivation of heart rate variability features from RR-intervals. By doing so, they assume correct detection of the QRS-complexes. However, it is highly likely that not all detections are correct. Therefore, it is recommended to visualize the actual R-peak positions in the ECG signal and allow manual adaptations. In this paper we present R-DECO, an easy-to-use graphical user interface (GUI) for the detection and correction of R-peaks. Within R-DECO, the R-peaks are detected by using a detection algorithm which uses an envelope-based procedure. This procedure flattens the ECG and enhances the QRS-complexes. The algorithm obtained an overall sensitivity of 99.60% and positive predictive value of 99.69% on the MIT/BIH arrhythmia database. Additionally, R-DECO includes support for several input data formats for ECG signals, three basic filters, the possibility to load other R-peak locations and intuitive methods to correct ectopic, wrong, or missed heartbeats. All functionalities can be accessed via the GUI and the analysis results can be exported as Matlab or Excel files. The software is publicly available. Through its easy-to-use GUI, R-DECO allows both clinicians and researchers to use all functionalities, without previous knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...